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Orthogonal frequency division multiplexing (OFDM) is recently drawing more and more attention for its
high bandwidth efficiency over underwater acoustic (UWA) channels. However, the classic OFDM chan-
nel estimation algorithms, e.g. Least Square (LS), Minimum Mean Square Error (MMSE) are subject to sig-
nificant performance degradation caused by doubly selective UWA channels. It has been recognized that
the sparsity contained in UWA channels offers the possibility to improve the performance by compressed
sensing (CS) estimation methods such as Orthogonal Matching Pursuit (OMP). Moreover, it has also been
observed that multipath arrivals associated with adjacent OFDM symbols usually exhibit varying magni-
tude but similar delay, which means that UWA channels of several continuous symbols can be modeled
as sparse sets with common support. In this paper, a Distributed Compressed Sensing (DCS) method is
proposed to transform the problem of OFDM channel estimation into reconstruction of joint sparse sig-
nals. By exploiting this type of joint sparsity among adjacent OFDM symbols, we establish the DCS OFDM
channel model, and then utilize the Simultaneous Orthogonal Matching Pursuit algorithm (SOMP) to
optimize the model. Finally the experimental performance under field test is provided to illustrate the
superiority of the proposed DCS channel estimation method, compared to the classic algorithm as well
as CS counterparts.

� 2016 Elsevier Ltd. All rights reserved.
1. Introduction

With rapidly increasing requirement on efficient acquisition
and transmission of underwater observation information associ-
ated with ocean environmental monitoring, underwater project
engineering and sea bottom resource exploitation tasks, there is
an urgent need for R&D of high data rate underwater acoustic com-
munication systems [1]. Unfortunately, compared with wireless
channel, underwater acoustic channel is much more complicated
due to the strictly limited bandwidth, extensive multi-path spread,
Doppler shift and background noise. Design and implementation of
high data rate underwater acoustic communication pose a consid-
erable challenge [2] to the research community.

OFDM has recently emerged as a promising alternative to
single-carrier systems for underwater acoustic communication
because of its robustness to long delay spreads and frequency
selectivity [3–5]. As well, OFDM provides high data rate for under-
water acoustic communication which can be used for underwater
acoustic speech or photo communication occasions. However,
underwater OFDM systems are sensitive to Doppler shifting and
phase noise [6], which will destroy the orthogonality of OFDM sub-
carriers, and pose difficulties in channel estimation and coherence
detection [7].

Various channel estimation methods developed based on the
assumption of the rich multi-path channel model, have been sum-
marized in the literature [8]. Qiao et al. [9] pose an iterative Lease
Square (LS) channel estimation algorithm for MIMO OFDM sys-
tems, the algorithm can greatly improve estimation accuracy,
and the low-pass filtering in time domain reduces AWGN and ICI
significantly. Jeong and Lee [10] pose a low complexity channel
tracking for adaptive MMSE channel Estimation in OFDM system,
the experimental result shows that the proposed channel parame-
ter estimator tracks channel condition reliably in various channel
conditions without significant increase in computational complex-
ity. Morelli and Mengali [11] pose a maximum likelihood estimator
(MLE) for OFDM system. However, the algorithms mentioned
above require larger number of pilots or preambles to guarantee
the estimated channel accuracy, which, unfortunately, will reduce
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the bandwidth efficiency and increase a high computation over-
head. Meanwhile, there will exist significant estimated noise in
non-zeros taps.

The underwater acoustic channels are considered to be sparse
both in time and frequency domain, i.e., the delay-Doppler spread
function has a limited number of nonzero elements [12]. The com-
pressed sensing (CS) methods have been widely used for channel
estimation to exploit the channel sparsity [13–16]. Wu and Tong
[13] propose the Non-uniform norm constraint LMS algorithm for
sparse underwater acoustic channel estimation. Singh et al. [14]
investigate the compressed sensing algorithms for estimation of
OFDM channel. By adopting the compressed sensing methods,
the length of training sequence can be significantly cut to improve
efficiency, and the estimation noise at non-zero taps can be effec-
tively suppressed [17].

While the UWA channels typically consists of sparse multipath
arrivals, the multipath structure of adjacent OFDM symbols
appears similar sparse structure because the delay of multipath
arrivals tend to exhibit much slower variation than the corre-
sponding magnitude does [18]. It means that UWA channels of sev-
eral continuous symbols can be modeled as sparse sets with
common support. Baron et al. [19] study three joint sparsity mod-
els (JSMs): JSM1 has sparse common component, JSM2 has com-
mon sparse supports and JSM3 has non-sparse common
component. Underwater acoustic OFDM channels among adjacent
symbols can be described as a JSM2 type model. Based on the basic
concept of CS, Distributed compressed sensing (DCS) is proposed to
exploit the joint sparseness contained among different sparse sig-
nals so as to achieve further performance enhancement. The tem-
poral, spatial correlation among multiple sparse targets have been
employed for DCS sparse recovery in wireless networks [20].

In this paper, a temporal joint sparse recovery approach is pro-
posed to exploit the sparse correlation among adjacent OFDM sym-
bols to improve the performance of OFDM channel estimation. By
converting the problem of OFDM channel estimation into recon-
struction of joint sparse signals with common support, a joint
sparse model under the framework of DCS is adopted to derive a
joint sparse recovery OFDM channel estimation algorithm. The
performance of the proposed method is quantitatively evaluated
with the experimental bit error rate (BER) of an UWA OFDM com-
munication system. Finally, underwater OFDM communication
experimental results obtained in Xiamen harbor are provided to
demonstrate the effectiveness of the proposed method in improv-
ing the performance of underwater acoustic OFDM communica-
tion, compared to the classic channel estimation methods.

The rest of this paper is organized as follows. In Section 2, the
model of OFDM and distributed compressed sensing are derived.
The experimental performance analysis and comparison are pro-
vided in Section 3. Some conclusions are made in Section 4.

2. System model

2.1. Transmitting model

We consider an OFDM baseband system with K equally spaced
subcarriers at frequencies

f k ¼ kDf ; k ¼ 0; . . .K � 1 ð1Þ

where Df is the K subcarrier separation, therefore, the entire signal
bandwidth is B ¼ KDf , and each OFDM symbol lasts T0 ¼ 1=Df . The
K subcarriers can be allocated as either data symbols or pilot sym-
bols, depending on the packet structure. Define the K subcarrier
symbols of i-th OFDM symbol as bi:

bi ¼ ½bði;0Þ; . . . ; bði;K � 1Þ�T ð2Þ
The transmitted time-domain discrete signal OFDM symbol can
be expressed as:

x ¼ FHbi ð3Þ
where F is the K � K unitary normalized Discrete Fourier Transform
(DFT) matrix,

F¼ 1
K

exp j2p 0
K �0

� �
exp j2p 1
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ð4Þ
To prevent the inter-block interference (IBI) induced by multi-

path, last Ncp samples of an OFDM symbol which are called cyclic
prefix (Cp) are copy to the beginning of each symbol. In general,
the length of cyclic prefix is larger than that of the longest channel
response delay.

2.2. Channel model

We assume that the channel between transmitter and receiver
is a linear time-invarint (LTI) finite impulse response (FIR) filter
with impulse response [21] written as:

hðtÞ ¼
XL�1

i¼0

hidðt � siÞ ð5Þ

where L denotes the length of channel which depends on the max-
imum channel delay spread, hi and si denote channel tap coefficient
and the channel delay respectively.

After removing the Cp, the discrete received signal can be
expressed as

yðnÞ ¼ xðnÞ � hðnÞ þwðnÞ ¼
XL�1

i¼0

xðiÞhðn� iÞ þwðnÞ ð6Þ

where wðnÞ is the additive noise. Eq. (5) can be written as matrix
form as:

y ¼ Ahþw ð7Þ
where A is the Toeplizt matrix. The received signal y is converted to
the frequency domain by applying DFT as:

Y ¼ Fy ¼ FdiagðxÞhþW ¼ ShþW ð8Þ
where vector x is the frequency domain of transmitting signal,
W ¼ Fw is the frequency domain noise and S ¼ FdiagðxÞ.

For the purpose of OFDM channel estimation, pilots are usually
equally inserted into an OFDM data symbol, so Eq. (8) can be writ-
ten as

Yp ¼ FdiagðXpÞhþWp ¼ SphþWp ð9Þ
The subscript p denotes pilot, which is used for channel estimation.
The classic channel estimation methods such as LS or MMSE algo-
rithms are popularly adopted to solve Eq. (9)[9,10].

2.3. CS channel estimation

Due to the sparsity feature of UW channels, the problem of the
UWA channel estimation can be converted into a sparse recovery
one, namely, it can be expressed as:

ĥ ¼ argmin khk1 subject to y ¼ Sh ð10Þ
where the vector y is received training sequences and matrix S is
called atoms, the length of h can be much shorter than that of
training sequences y [22], because of the sparseness. We can use
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compressed sensing method to improve the channel estimation
performance and reduce the computation.

2.4. DCS estimation of OFDM channels

For sparse signals with common support, the concept of DCS is
capable of further improving the performance of sparse recon-
struction [19]. As the UWA OFDM channels of adjacent data sym-
bols exhibit significant temporal correlation, i.e., multipath
arrivals are associated with similar time delay and different mag-
nitude, according to the Joint Sparsity Models 2 (JSM2) of DCS the-
ory, the UWA channels can be modeled as sparse signals with
common temporal support, which enable the adoption of DCS
recovery to improve the estimation performance, or alternatively
decrease the number of pilots.

Under the JSM2 framework, UWA channel hi of the i-th data
block can be described as:

hi ¼ WiXþ di i 2 ð1;2; . . . ;NÞ ð11Þ
where N is the number of OFDM data symbols used for joint sparse
recovery. Thus, the UWA OFDM channels of N adjacent OFDM data
symbols consist of two types of multipath arrivals, namely, multi-
path arrivals with the common supportX but different magnitudes,
and those with different time delay di.

According to the JSM2 model, estimation of MIMO UWA chan-
nels can be converted to the following DCS problem:

Ĥ ¼ argmin
XN

i¼1

ðkhik1Þ s:t:kYp � SpHk22 6 e ð12Þ

where e is the noise factor, hi is the channel associated with i-th
OFDM symbol, N is the number of associate OFDM data symbols,
P is the number of pilots in an OFDM data symbols.

H ¼ ½h1;h2; . . . hN�; H 2 CNL�1, Y ¼ ½Yp;1;Yp;2; . . .Yp;N�; Y 2 CPN�1,
where Yp;i is the received signal of i-th OFDM pilots in frequency
domain. The measurement matrix can be expressed as

Sp ¼

Sp;1 0 � � � 0
0 Sp;2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Sp;N

2
66664

3
77775
; Sp 2 CPN�NL ð13Þ
Table 1
Complexity comparison.

Parameters Complexity
2.5. SOMP algorithm

Accordingly, the DCS estimation of the underwater OFDM chan-
nels can be addressed with the simultaneous OMP (SOMP) algo-
rithm. Specifically:

Input: N adjacent receiving OFDM pilot symbols
Y ¼ ½Yp;1;Yp;2; . . .Yp;N�; Y 2 CPN�1, Sp 2 CPN�NL; the maximum
iteration T and the threshold of residual error.
Initialization:

Residual error R0
i ¼ Yp;i ; R0

i 2 CP�1; i 2 ð1;2; . . . ;NÞ; where the
superscript denotes the i-th iteration, the subscript denotes
the parameters corresponding to i-th OFDM symbol. Initialize
the index of atom as X ¼ £, initialize atom set as Phiti ¼ £.

The multi-path magnitude of the i-th OFDM symbol is ĥi ¼ £.
The initial iteration number is t = 1.

Step 1:

OMP OðPLþ Pt þ Pt2 þ t3Þ
SOMP (N = 2) 2 � OðPLþ Pt þ Pt2 þ t3Þ
SOMP (N = 4) 4 � OðPLþ Pt þ Pt2 þ t3Þ
Selecting atom Sp;i from the Sp to perform inner product with

residual error Rt�1
i , summing the inner product outputs of N OFDM

symbols to determine the location corresponding to the maximum
result kt , saving kt and the associated atom, i.e., the Sp;i associated
with kt is denoted as Sp;i;kt

kt ¼ argmax
XN

i¼1

jhSp;i;Rt�1
i ij

X ¼ X [ kt

Phiti ¼ Phiti [ Sp;i;kt

ð14Þ

Step 2:
Calculate the multi-path magnitude of each OFDM symbol with

LS method as:

bi ¼ ½ðSp;i;kt ÞHSp;i;kt �
�1
Sp;i;ktYp;i i 2 ð1;2; . . . ; NÞ ð15Þ

Save the coefficients ĥi ¼ ĥi [ bi; i 2 ð1;2; . . . ;NÞ; then calcu-
late the residual error:

Rt
i ¼ Yp;i � Phitti � ĥt

i ð16Þ
Step 3:
Iterations stop when the current residual is smaller than the

threshold or the number of iterations surpasses the defined num-
ber, otherwise keep on with iterations with t ¼ t þ 1

Output:

Thus the multi-path coefficients hi; i 2 ð1;2; . . . ;NÞ and the
corresponding time delay X are obtained.

The iteration procedures above indicate that, the proposed DCS
channel estimation method not only makes use of the sparse fea-
ture of each OFDM symbol’s channel itself, but also exploits the
joint sparse relationship of channels among adjacent OFDM sym-
bols. Note that, when N ¼ 1; the SOMP algorithm shrinks to the
classic OMP algorithm.

2.6. Comparison of computational complexity

The computational complexity of the OMP as well as the SOMP
algorithm is provided in Table 1 [23], where P is the number of
pilots, L is the length of channel impulse response, t is the iteration
number. From Table 1 one may observe that the SOMP algorithm
adopting N symbols for joint estimation will lead to a computa-
tional complexity N times higher than that of the OMP algorithm.

3. Experiment and discussions

3.1. Setup of at-sea experiment

The experimental field data was collected from a shallow water
acoustic channel with slight wind condition at Wuyuan Bay, Xia-
men, China. The depth of the experiment area is about 10 m. The
OFDM signal was transmitted from a transducer, at a depth of
2 m. The transmitted signal was received by two receivers sub-
merged at the depth of 2 m and 6 m respectively. The transmitting
transducer was suspended under a pier and the receivers are
mounted at the rear of one anchored ship, with a distance of
1000 m as shown in Fig. 1. The channels from transmitting trans-
ducer to the upper and the lower receiver are defined as channel
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Fig. 1. Setup of OFDM acoustic communication experiment.

Table 2
Parameters of at-sea experiment.

Description Value

Sampling frequency (fs) 96,000 Hz
Carrier frequency (fc) 15,500 Hz
Bandwidth (B) 5000 Hz
Number of subcarriers (K) 256
Symbol duration (T) 128 ms
Length of cyclic prefix (Lcp) 32 ms
Mapping type QPSK

Zero
guard CP CP

OFDM
Symbol

OFDM
SymbolSync

20 OFDM symbols200ms50ms

Zero
guard CP CP

OFDM
Symbol

OFDM
SymbolSync

20 OFDM symbols200ms50ms

Fig. 3. Frame structure of OFDM packet.
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1 and channel 2 respectively. The sound speed profile is provided
in Fig. 2.

The parameters of at-sea experiment are presented in Table 2.
Note that the number of total carriers contains that of data subcar-
riers and pilot subcarriers, which are designed for information
delivering and channel estimation respectively.

The frame structure of OFDM packet is presented in Fig. 3. The
Linear Frequency Modulation (LFM) pulse with a length of 50 ms is
used as the synchronizing head of one frame. There are totally 20
OFDM symbols in one packet. The correlation method in [24] is
adopted to estimate the bulk Doppler, which is compensated by
resampling.

To evaluate the performance of the proposed method, we
adopted different numbers of pilot subcarriers, which are equally
insert in one OFDM symbol. For the purpose of comparison, the
proposed joint sparse recovery (DCS) OFDM channel estimation
method, the OMP method and the LSQR [22]method are selected
for channel estimation respectively. The results of channel estima-
tion are used for OFDM demodulation in the form of a classic chan-
nel equalizer [25] to facilitate the performance evaluation of the
channel estimation algorithms.
1503.8 1504 1504.2 1504.4

2

4

6

8

10

sound speed (m/s)

de
pt
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Fig. 2. Sound speed profile.
With the proposed algorithm, 2 adjacent OFDM symbols (corre-
sponding method denotes SOMP2), and 4 continuous OFDM sym-
bols (corresponding method denotes SOMP4) are used for joint
sparse recovery respectively to examine the relationship between
performance improvement and the OFDM symbols adopted for
joint sparse reconstruction. The performance of different OFDM
channel estimation algorithms is also analyzed under different
pilot number. The original SNR of the channel 1, channel 2 are
20.5 d and 19.7 dB respectively, with an estimated bulk Doppler
of about �2.0 Hz.
3.2. The results of experiment and discussion

The multi-path intensity profile (MIP) of channel 2 obtained
during the experiment with LSQR, OMP, SOMP2 and SOMP4 is
shown in Fig. 4(a), (b), (c) and (d) respectively. We set the pilot
number at 60, and set the sparse degree at 6 in the OMP, SOMP2
and SOMP4 methods.

Fig. 4 indicates that the experimental channel exhibits a typical
sparse pattern with distinct multipath arrivals. One can see that
there exists considerable estimation noise in non-zero taps which
is obtained by LSQR method as shown in Fig. 4(a), because the
LSQR algorithm is non-sparse algorithm and it requires a large pilot
number to ensure the positive definite solution which unfortu-
nately occupies the bandwidth.

With the result of classic OMP method in Fig. 4(b) and that of
the proposed DCS methods (SOMP2 and SOMP4) shown in Fig. 4
(c) and (d), it is evident that the proposed DCS methods yield a bet-
ter estimation performance on weak multipath arrivals. The reason
is that, as Eq. (14) shows, the proposed DCS not only explores the
sparseness of individual OFDM underwater channel, but also uti-
lizes the joint sparse relationship among adjacent OFDM symbols.
Furthermore, we can also observe that the SOMP4 method yields a
better performance of estimation noise suppression than the
SOMP2 does.

Fig. 5 provides the curves between pilot number and BER of
channel 2. We can observe that the BER obtained by SOMP4 is
the lowest, which illustrates the effectiveness of the proposed
method. From Fig. 5 we can also conclude that, for the proposed
SOMPmethods, a small pilot number corresponds to higher perfor-
mance improvement. Specifically, when the number of pilots is 50,
the BERs associated with LSQR, OMP, SOMP2 and SOMP4 are
0.1875, 0.1145, 0.1006, and 0.0852 respectively. Under a pilot
number of 100, the BERs corresponding to LSQR, OMP, SOMP2
and SOMP4 are0.035, 0.0262, 0.0238 and 0.0214 respectively. Thus,
Fig. 5 demonstrates that, under small pilot number, the proposed



Fig. 4. Channel impulse response of channel 2 obtained by different algorithms.
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Fig. 5. Pilot number versus BER of channel 2.
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method can achieve much performance gain upon the classic
methods.

In Fig. 6, the constellation results of channel 2 obtained by dif-
ferent algorithms are shown with a pilot number of 100. One can
observe that the SOMP4 obtains the best separated constellation
result, which indicates the best communication performance. The
result of constellation is consistent with that of Fig. 4 and Fig. 5
as analyzed before.
3.3. Performance analysis under time variations

In order to investigate the performance of proposed method
under time-varying channel,we compare theOFDMcommunication
performance associated with two receivers that exhibiting different
time variations. Similar to [26], the channel correlation coefficient is
defined to quantitatively evaluate the extent of time variations of
experimental UWA channels associated with adjacent OFDM
symbols:
qi ¼
Efhih

H
iþ1gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Efhih
H
i gEfhiþ1h

H
iþ1g

q i 2 ð1;2; . . . ;N � 1Þ ð17Þ
where the superscript H denotes the Hermite transpose, hi and hi+1

denotes the channel response associated with the ith and i + 1th
symbol respectively, N is number of total symbols.

As the upper receiver is subject to surface fluctuations caused
by wind and the current, the corresponding channel 1 exhibits
more significant time variations than channel 2 does. Shown in
Fig. 7 is the Channel impulse response of channel 1 obtained by
SOMP2, with that of channel 2 provided in Fig. 4(c). One can see
that the time variations of channel 1 are more obvious than that
of channel 2, corresponding to a Doppler shift of about �2.1 Hz
and �1.6 Hz respectively.

In Fig. 8, the BER with respect to the channel correlation coeffi-
cient of adjacent OFDM symbols is provided for channel 1 and
channel 2, where (a) and (b) are the BER corresponding to channel
1 and channl 2 respectively, and (c) and (d) are channel correlation
coefficients of adjacent two OFDM symbols obtained by Eq. (17)
corresponding to channel 1 and channel 2 respectively.

From Fig. 8(a) and (b), we can see that, the proposed DCS chan-
nel estimation methods generally present better performance than
classic OMP does for both channel1 and channel2. In view of Fig. 8
(c) and (d), it is evident that the channel correlation coefficient of
channel 2 is considerably higher than that of channel 1, due to
more surface-induced time variations of channel 1 as mentioned
previously. As a result, channel 2 outperforms channel 1 in terms
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Fig. 7. Channel impulse response of channel 1.
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of the BER improvement upon classic OMP algorithm achieved by
the proposed algorithm.

As Fig. 8 indicates, the fluctuation of BER curve is highly consis-
tent with that of the channel correlation coefficient, i.e., the higher
channel correlation coefficients corresponds to better performance
of DCS methods, while the lower channel correlation coefficients
leading to the worse performance of DCS methods. The reason is
that, as a large channel correlation coefficient means high
similarity between channels of adjacent symbols, the channels
can be well modeled by sparse set with common support. Thus
the proposed DCS method is capable of improving the estimation
performance via joint sparse reconstruction compared to the clas-
sic algorithm. Specifically, as show in Fig. 8(a) and (c), when the
channel correlation coefficient is 0.81 at the 12th OFDM symbol
from channel 1, the BERs of OMP, SOMP2 and SOMP4 methods
are 0.100, 0.0957 and 0.0826 respectively which means that DCS
type methods produce better performance. On the other hand, a
small channel correlation coefficient corresponds to considerable
time variations between adjacent OFDM channels, which cause
more different components that cannot be formulated by common
support, thus lead to performance degradation of DCS algorithm.

Moreover, at the presence of extremely significant time varia-
tions, the proposed DCS algorithmmay even exhibits worse perfor-
mance than classic method does. For example, as Fig. 8(a) and (c)
indicating, the channel correlation coefficient at 7th symbol is only
0.0322, implying the presence of extreme time variations. As a
result, the corresponding BERs obtained by OMP, SOMP2 and
SOMP4 are 0.1174, 0.1304 and 0.1217 respectively, which means
that the performance of classic OMP method is better than that
of the proposed DCS method when the channel encounters extre-
mely rapid time-variations.

Thus, while the experimental results reveal that the proposed
DCS channel estimation is capable of achieving an overall perfor-
mance improvement by exploiting the cross-correlation between
the adjacent OFDM symbols, the impact of significant time varia-
tions on the effectiveness of joint channel estimation should be
taken into account to achieve comprehensive performance
improvement.
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4. Conclusion

While the sparsity contained in UWA channels have been pop-
ularly employed to improve the performance of channel estimation
by CS methods, for UWA channels of adjacent symbols, similar
delay pattern of multipath arrivals provides attractable possibility
for further performance enhancement under the framework of
DCS. In this paper, we investigated the joint estimation of under-
water acoustic OFDM channels by modeling the channels of con-
tinuous OFDM systems as sparse set with common support. By
establishing the DCS model of OFDM channels and utilizing the
SOMP algorithm to optimize the model, the channel estimation
performance under different number of training pilots is analyzed.
Finally at-sea experimental results are provided to show that the
proposed method outperforms classic LSQR and OMP methods
due to the exploitation of the common sparseness. Moreover, the
impact of time variations on the performance of the proposed joint
estimation method is also quantitatively analyzed and discussed
based on the experimental data.
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