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MIMO communication has been recognized as a potential solution for high speed underwater acoustic
communication, which unfortunately encounters significant difficulties posed by simultaneous presence
of multipath and Co-channel interference (Col). Sparsity contained in the multipath structure of under-
water acoustic channels offers an effective way for improving channel estimation quality and thus
enhancing the communication performance in the form of time reversal or channel estimation based
equalization. However, for MIMO channels with extensive multipath and Col, the performance gain

f\(/["’f]'\‘/’[v grds" achieved by classic sparsity exploitation channel estimation methods such as orthogonal matching pur-
DCS suit (OMP) is still not enough to yield satisfactory performance. Under quasi-stationary assumption,
Joint sparsity underwater acoustic channels of adjacent data blocks exhibit correlated multipath structure, namely,
Col multipath arrivals with similar time delay but different magnitude, which has not been exploited. In this

paper, a joint sparse recovery approach is proposed to exploit the sparse correlation among adjacent data
blocks to improve the performance of channel estimation. Under the framework of distributed com-
pressed sensing (DCS), a joint sparse model which treats the multipath arrivals as sparse solutions with
common time support is adopted to derive a joint sparse recovery algorithm for efficient channel estima-
tion, the results of which are used to initialize and periodly update a channel estimation based time
reversal receiver. Finally, underwater MIMO communication experimental results obtained in a shallow
water channel are provided to demonstrate the effectiveness of the proposed method, compared to the
same type of receiver that do not exploit the joint sparse.

Sparse recovery

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Rapidly growing of ocean related missions such as environmen-
tal monitoring, underwater project engineering and resource
exploitation urges the R&D of high data rate underwater acoustic
(UWA) communication systems, which is unfortunately seriously
hindered by extreme difficulties of underwater acoustic channels
such as narrow bandwidth, multipath, Doppler spread and back-
ground noise [1-3].

With popularly successful applications in wireless fields, MIMO
communication offers a potential solution for high data rate under-
water acoustic communication. Unfortunately, simultaneous pres-
ence of multipath and Col poses significant difficulty to estimation
of acoustic MIMO channels. As it has been recognized that channel
estimation is capable to improve the performance of underwater
acoustic communication in the form of channel equalization such
as time reversal processor or decision feedback equalizer (DFE),
extensive investigations have been carried out. In [4] a channel
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estimation based space-time equalizer consisting of multiple DFE
equalizers is used for UWA MIMO communications. Song et al.
[5] proposed a low complexity time reversal MIMO receiver by
coupling multi-channel time reversal processors with a single
channel DFE equalizer.

For MIMO channels with extensive multipath and Col, conven-
tional estimation methods such as Least squares (LS) algorithms is
subject to significant degradation. As sparsity contained in the
multipath structure of underwater acoustic channels offers an
effective way for improving channel estimation quality [6,7], com-
pressed sensing (CS) channel estimation method has been
employed to yield performance enhancement by exploitation of
sparseness contained in underwater acoustic channels [8]. How-
ever, for MIMO channels with serous Col, performance gain
achieved by sparsity exploitation of UWA channel is still not
enough to meet the need of MIMO acoustic communication.

The quasi-stationary assumption of UWA channels [9] that
applicable to most UWA channels with moderate or slight time
variations indicates, UWA channels of adjacent data blocks exhibit
correlated multipath structure under the condition that the length
of data block does not exceed the period within which the channel
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remain static. Namely, among multiple continuous data blocks the
multipath arrivals have similar time delay but different magnitude.
While the sparseness contained in individual UWA channel has
been utilized extensively, this type of cross-block correlation has
not been exploited.

Based on the basic concept of CS, the DCS is proposed to exploit
the joint sparseness among different sparse signals to achieve fur-
ther performance enhancement. The temporal, spatial correlation
among multiple sparse targets has been employed for DCS sparse
recovery in wireless network [10,11]. In this paper, a temporal
joint sparse recovery approach is proposed to exploit the sparse
correlation among adjacent blocks to improve the performance of
MIMO channel estimation. Under the framework of DCS, a joint
sparse model which treats the multipath arrivals as sparse solu-
tions with common time support and different magnitude is
adopted to derive a joint sparse recovery algorithm for efficient
estimation of MIMO channels. The enhanced estimation perfor-
mance achieved with joint sparse recovery contribute to improve
the MIMO communication quality in the form of a multichannel
time reversal receiver [5], which is initialized and periodly updated
by the results of channel estimation. Finally, underwater MIMO
communication experimental results obtained in Xiamen harbor
are provided to demonstrate the effectiveness of the proposed
method in improving the performance of MIMO acoustic commu-
nication, indicating the advantages of joint sparsity exploitation
compared to classic sparse exploitation.

2. Problem formulation
2.1. System model of MIMO acoustic communication

The receiving signal of a MIMO acoustic communication system
with N transmitters and M receivers can be written as [5]:

N L-1
.ym(k) = Zzsn(k - l)hn.m(k7 l) + Wm(k)’ (])
n=1 |=

where yn,(k),wn(k) is the receiving signal and additive noise at the
mth receiver, s,(k), h,m(k,]) is transmitting signal of the nth trans-
mitter, and channel impulse response between n-m couple, k is time
index for observation time, [ is time index for time delay. Under the
quasi-stationary assumption that the channel remains stable in P
samples, (1) can be expressed as:

N
Yo=Y Ay + Wy, 2)

n=1

where the Toeplitz type matrix A, [5] is:
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hom = [hom(k) hpm(k+1)

Wy = [Wn(k+L) wpk+L+1)
(2) can be further expressed as:

VY = Ahy, +wp, (5)

Where: A= [A], Az, AN], h= [h]‘m7 hz‘m,
superscript [*]” denotes transpose operation.

hy,.]", the

The MIMO channel h can be estimated with the classic LS [5] or
MMSE type method [1]. Considering that UWA channels exhibit
sparse features, sparsity exploitation algorithm such as the OMP
[5] is capable to improve the estimation performance. For multi-
channel receiver, estimation output of each channel is used to con-
struct the time reversal processor of corresponding channel. In [5],
a low-complexity MIMO receiver is proposed to combine the mul-
tichannel time reversal processor to deal with the ISI, which is fol-
lowed by a single channel DFE equalizer to address the residual
multipath.

2.2. DCS estimation of MIMO channels

For sparse signals with common support, DCS is capable to fur-
ther improve the performance of sparse recovery by exploiting the
joint sparsity [11,12]. To be specific, when the length of data block
is far more less than the period within that the channel remains
static, UWA channels of adjacent data blocks will exhibit signifi-
cant correlation, i.e.,, multipath arrivals have similar time delay
but different magnitude. According to the Joint Sparsity Models 2
(JSM2) of DCS theory [12], among multiple adjacent data bocks
the UWA channels can be modeled as sparse solutions with com-
mon support, the common support is time delay of the correlated
multipath arrivals. It means that UWA channels of adjacent data
blocks measured independently can be reconstructed jointly by
employing DCS method to improve the recovery performance or
alternatively cut down the length of training sequence P to save
overhead.

Under the JSM2, UWA channel h; of the ith data block can be
described as:

h,=¥,Q+d, ie(LZ,...,T) (6)

where T is the number of data blocks used for joint sparse recovery.
The UWA channels associated with T adjacent data blocks consist of
two types of components: first, the common multipath components
with the common support © and different magnitude ¥;; second,
different multipath arrivals d; with different time delay. According
to the JSM2 model, estimation of MIMO UWA channels can be con-
verted to the following DCS problem:

T .
Hn,m = arg man(“h;mH])

i (7)
St ||Ym —AHpn2 < e

where, h),, is the channel associated with the i-th data block
between the nm-th couple, ¢ is a noise factor. Thus, we have:

hT
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where the superscript [*]" denotes Hermitian operation, yi, is the

i-th data block received in the m-th receiver, defined as:

Vi = [V(k+L+i%B),y,(k+L—-1+ixB), ...,
yik+L+P—1+ixB)" yi ™ (8)

where B (B > P) is the length of each data block, i x B is the offset

of data block. Thus the measurement matrix A, can be expressed
as:

Xx 0 ... 0
0 X; ... 0

A= | . | Apec™H 9)
0 0 0 X
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2.3. SOMP algorithm

The DSC estimation of the MIMO UWA channels can be
addressed with the simultaneous OMP (SOMP) algorithm as fol-
lowing [11]:

Input: T adjacent receiving data blocks Y, = [y}, ¥, .-,
ymH, Y., € CT1: A, € C™*IN: the maximum iterations K; thresh-
old of residual error.

Initialization:

Initializing the residual error as (R)), =y, (R), e ™',
ie(1,2,...,T), where (e); denotes the i-th iteration, superscript
denotes index of the data block. Initializing the index of atom as
Q = ¢, initial atom set as Phit' = . The multipath magnitude of
the i-th data block is flﬂ,m = @,i€(1,2,...,N) and the initial iter-
ation number is t=1.

Step 1:

Selecting atom X; from A, to perform inner product with resid-
ual error (R")H, summing the inner product outputs of T data
blocks to determine the location corresponding to the maximum
result (4),, saving (1), and the associated atom, i.e., the X; associ-
ated with (1), is denoted as Xj ),

T
(), = argmax y_|(X;, (Rs),_, )|

. (1
Q=QU (1),

Phit’' = Phit' U Xi (i),

Step2:
Calculating the multipath magnitude of each data block with LS
method as:

-1

Bi= [(X,‘.,(Z)[)HX,-,(/;)[] Xiy(z)rYim ie(1,2,...,T) (12)

Saving hi, = fn;’m Ug,ie(1,2,...,T), then calculating the
residual error:

(R), =y, — Phit' « hi,, (13)

Step3:

Iterations stop if the current residual is smaller than the thresh-
old or the number of iterations surpass the defined number, else
continue with t=t+ 1.

Output:

Thus the multipath coefficient ﬁ;vm,i €(1,2,...,T) and the cor-
responding time delay Q are obtained.

The iteration procedures above indicate that the proposed DCS
method is capable of not only utilizing the sparse feature of indi-
vidual channel associated with each data block, but also exploiting
the correlation of multipath arrivals among multiple data block for
joint reconstruction. Note that when T=1 the SOMP algorithm
shrinks to the classic OMP algorithm.

3. Experiment and discussions

The experimental field data was collected from a shallow water
acoustic channel with slight wind condition at Wuyuan bay, Xia-
men, China. The depth of the experiment area is about 12 m. The
transmitting couple was suspended to depth of 4 m and 6 m from
a boat, with the 8-element receiving vertical array suspended to a
depth range of 2-8 m with a space of 1.5 m at the pier. The distance
between the transmitter and receiver was 1000 m as shown in
Fig. 1.

In the field experiment, a 2TX-8RX MIMO acoustic communica-
tion system is adopted with a channel estimation based multichan-
nel time reversal receiver as proposed in [5]. The channel response
obtained with the DCS method are employed as the coefficient of
the time reversal processor for each channel. For the purpose of
comparison, the proposed joint sparse recovery (DCS) MIMO chan-
nel estimation method, the OMP method as well as the classic LS
method is selected for the time reversal MIMO receiver. Moreover,
for the proposed DCS method, different number of continuous data
blocks, i.e., 2 data blocks (J2DCS), 4 data blocks (J4DCS) and 8 data
blocks (J8DCS) are used for joint sparse recovery respectively.

The modulation format was QPSK with a bit rate of 8 kilobits
per second and a carrier frequency of 16 kHz. The bandwidth of
the transducer couple was 13-18 kHz. Original sampling rate of
the received data is 96 ksps. Note that sampling interval of the
baseband sequence is 1/2 of the symbol duration to provide
robustness of carrier phase fluctuations in underwater acoustic
channel. The raw received signal recorded during the sea experi-
ment has an SNR of 14 dB.

In the experiment, the multichannel time reversal receiver
adopts 8 channels for multi-channel time reversal processing.
The length of the time reversal processor is the same with that of
channel estimator, set as L = 150. The multichannel time reversal
receiver adopted the periodly training mode [5]. Namely, after
the initial channel estimation to set the initial coefficient of the
time reversal processor, every 600 symbols the time reversal pro-
cessor is updated with the output of the channel estimation algo-
rithm, in which the previously detected bits are adopted as
training sequence. The single-channel adaptive DFE followed the
combing time reversal is updated with RLS algorithm. The filter
length of the RLS updating forward and backward is set as 24, 12
respectively, with the RLS forgetting factor of 0.998 [4].

The channel impulse response (CIR) of the TX2nd-RX2nd chan-
nel obtained during the experiment with LS, OMP, J2DCS and J8DCS
is shown in Fig. 2(a)-(d) respectively, which indicates that the
experimental shallow water channel exhibits typical multipath
pattern. While the channel response obtained with LS method con-
tains significant estimation noise at those near zero taps, it is evi-
dent from Fig. 2 that the results obtained via OMP method and DCS
type methods exhibit a good noise suppression effect due to the
exploitation of sparsity, or joint sparsity. Moreover, one may also
observe that DCS type methods generally outperform the OMP
method in identification of weak multipath components, the qual-
ity of which is proportional to the number of blocks adopted for
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Fig. 1. Setup of the acoustic MIMO communication experiment.
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Fig. 2. MIMO TX2nd-RX2nd channel response obtained with different estimation methods. (a) LS, (b) OMP, (c) J2DCS, (d) J4DCS, (e) J8DCS.

joint sparse recovery. Namely, J8DCS achieved the best details of
weak multipath arrivals, followed by J4DCS and J2DCS.
Meanwhile, the CIR of the TX2nd-RX6nd channel obtained with
LS, OMP, J2DCS and J8DCS is shown in Fig. 3(a)-(d) respectively.
One may observe from Fig. 3 that, while the energetic taps of the
CIR were estimated with better accuracy by using more data blocks
for joint estimation, a weak and fast fluctuating arrival at around
9 ms of time delay domain was missed by the J8DCS estimator as
shown in Fig. 3(e). This means that, when too many data blocks
are employed for joint sparse recovery, it will be difficult to detect

the rapidly time-varying multipath arrivals which do not remain
stable within the period of those data blocks.

The BER results with respect to training length P obtained by
the multichannel time reversal receivers driven by different MIMO
channel estimation methods are provided in Fig. 4. It is evident
that under different P parameter the proposed receiver yields the
best BER result compared to the OMP and LS methods, further val-
idating the superiority of the joint sparse recovery in the presence
of multipath and Col. The classic LS receiver produces the worst
BER, as no any sparse exploitation is adopted.
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Fig. 3. MIMO TX2nd-RX6th channel response obtained with different estimation methods. (a) LS, (b) OMP, (c) J2DCS, (d) J4DCS, (e) J8DCS.
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Moreover, in view of DCS channel methods with different num-
ber of data blocks used for joint sparse recovery, both the J4DCS
and J8DCS did not yield distinct performance improvement com-
pared to J2DCS. It is attributed to the time variations of the physical
UWA channels, which lead to significant correlation loss when a
large number of data blocks are used for joint sparse recovery.

The constellation outputs corresponding to TX2nd obtained
with the LS method, OMP method, J2DCS, J4DCS and J8DCS based
receiver are provided in Fig. 5(a)-(e) respectively, from which
one may see that the LS receiver corresponds to a poor constella-
tion quality, as there will exist considerable estimation noise at
zero taps. The OMP receiver achieves better separating effect
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Fig. 5. Constellation output of MIMO receiver for TX2nd with different estimation methods. (a) LS, (b) OMP, (c) J2DCS, (d) J4DCS, (e) J8DCS.

compared to the LS method. However, as the OMP method only
takes advantage of the sparseness contained in individual data
block, quality of constellation of the OMP receiver is still inferior
to that of the proposed DCS receiver, which is capable to make
use of the common sparsity among continuous data blocks. Mean-
while, due to time variations of physical UWA channel, constella-
tion output of J4DSC and J8DCS exhibit almost the same quality
as the J2DSC, which is generally consistent with the BER result in
Fig. 3.

The above experimental results reveal that, for underwater
communication channels that exhibit similar multipath structure
over several data symbols, DCS estimation of MIMO channels is
capable of yielding performance improvement at the presence of
multipath and Col. Moreover, contribution of the algorithm factors,
i.e., training length and number of symbols for joint estimation, on
the performance superiority is quantitatively analyzed and com-
pared in terms of BER and constellation output of MIMO receiver.
Note that, while the analysis and comparison regarding the pro-
posed DCS channel estimation method are obtained by only one
experimental result, qualitative relationship between the exploita-

tion of joint sparsity and the temporal stability of channel provides
a meaningful reference for similar scenarios. Specifically, adoption
of more symbols for joint channel estimation means further
exploitation of sparse recovery from the viewpoint of DCS theory.
However, time scale over which the path remains correlated will
limit the utilization of large symbol number for DCS estimation.

4. Conclusion

Consider the difficulties posed by multipath and Col to MIMO
communications, a novel channel estimation method employing
the joint sparsity of channel multipath structure among continu-
ous data blocks is proposed to improve the performance of the
channel estimation based time reversal receiver. With joint sparse
reconstruction MIMO channel estimation under the framework of
DCS, the sea trial performed at shallow water channel show that
the proposed joint sparse recovery method exhibits better perfor-
mance than the same type of receiver driven by LS or OMP meth-
ods that do not utilize the cross-block correlation. Furthermore,
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while the performance gain yielded by exploitation of joint sparse
is evident, experimental demonstration also indicated that,
employment of more data blocks for joint sparse recovery does
not always guarantee distinct performance improvement due to
the time variations of UWA channels.

Acknowledgement

The authors are grateful for the funding of the National Nature
Science Foundation of China (Nos. 11274259 and 11574258)
and the Open project of the National Key Laboratory of
Science and Technology on Underwater Acoustic Antagonizing
(No. 2016KL02-02) in support of the present research.

References

[1] Yang Z, Zheng YR. Iterative channel estimation and turbo equalization for
multiple-input multiple-output underwater acoustic communications. IEEE ]
Oceanic Eng 2016;41(1):232-42.

[2] Ling Jun, Tan Xing, Yardibi T, Li Jian, Nordenvaad ML, He Hao, Zhao Kexin. On
Bayesian channel estimation and FFT-based symbol detection in MIMO
underwater acoustic communications. IEEE ] Oceanic Eng 2016;39(1):59-73.

[3] Rouseff D, Badiey M, Song A. Effect of reflected and refracted signals on
coherent underwater acoustic communication: results from the Kauai
experiment (KauaiEx 2003). ] Acoust Soc Am 2009;126(5):2359-66.

[4] Song B, Ritcey ]. Spatial diversity equalization for MIMO ocean acoustic
communication channels. IEEE ] Ocean Eng 1996;21(4):505-12. October.

[5] Song A, Badiey M, McDonal VK, et al. Time reversal receivers for high data rate
acoustic multiple-input-multiple-output communication. IEEE ] Oceanic Eng
2011;36(4):525-38.

[6] Wu FY, Tong F. Gradient optimization p-norm-like constraint LMS algorithm
for sparse system estimation. Signal Process Apr. 2013;93(4):967-71.

[7] Wu FY, Tong F. Non-uniform norm constraint LMS algorithm for sparse system
identification. IEEE Commun Lett 2013;17(2):385-8. February.

[8] Cotter SF, Rao BD. Sparse channel estimation via matching pursuit with
application to equalization. IEEE Trans Commun 2002;50(3):374-7.

[9] Stojanovic M. Efficient processing of acoustic signals for high-rate information
transmission over sparse underwater channels. Phys Commun 2008;1
(2):146-61.

[10] Chitre MS, Shahabodeen S, Stojanovic M. Underwater acoustic
communications and networking: recent advances and future challenges.
Mar Technol Soc 2008;42(1):103-16.

[11] Baron D, Wakin MB, Duarte MF, et al. Distributed compressed sensing. Rice
University; 2006.

[12] Corroy S, Mathar R. Distributed compressed sensing for the MIMO MAC with
correlated sources. in: Communications (ICC), 2012 IEEE international
conference on. IEEE, 2012. p. 2516-20.


http://refhub.elsevier.com/S0003-682X(16)30323-1/h0005
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0005
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0005
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0010
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0010
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0010
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0015
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0015
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0015
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0020
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0020
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0025
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0030
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0030
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0035
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0035
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0040
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0040
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0045
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0045
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0045
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0050
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0050
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0050
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0055
http://refhub.elsevier.com/S0003-682X(16)30323-1/h0055

	Exploiting joint sparsity for underwater acoustic MIMO communications
	1 Introduction
	2 Problem formulation
	2.1 System model of MIMO acoustic communication
	2.2 DCS estimation of MIMO channels
	2.3 SOMP algorithm

	3 Experiment and discussions
	4 Conclusion
	Acknowledgement
	References


