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a b s t r a c t

In order to prevent the danger caused by falling tiles from high-rise buildings, a rapid and effective
non-destructive testing and evaluation (NDT&E) technique has been developed to assess the tile–wall
bonding quality. The proposed technique is based on sounds excited by controlled impacts, and can
easily be integrated with climbing robots to automate the tile–wall inspection process without the need
for human workers to work at life-threatening height. To facilitate the result evaluation and maintenance
planning, the approximate size of defective area needs to be assessed and determined. Though it is well-
known that the natural frequency of flexural vibration is related to the size of the debonded area, strong
multiple-mode frequencies caused by complex shapes of the defects or impacting at geometric edge
uzzy assessment
ile–wall inspection

(not at the center) of the defects impose significant difficulties in extracting automatically the natural
frequency from the sound signals. In this paper, a fuzzy scheme is introduced to improve the robustness
and accuracy of defects assessment. Based on fuzzy theory, vibration principle and human experience,
a fuzzy logic model relating the characteristics of impact sounds to the approximate size of the defect
is developed and utilized. The design of the fuzzy system, including membership functions and fuzzy
reasoning rules, is also provided. To demonstrate the validity of the proposed method, experimental
results obtained from physical tile walls are presented and discussed.
. Introduction

In highly developed metropolises like Hong Kong, tiles are used
xtensively on external walls of high-rise buildings for decoration
nd weather protection. Unfortunately, due to poor workmanship,
tmospheric pollution and aging effects, the expected lifespan of
ile adhesives is much reduced. This leads to an increasing number
f accidents caused by tiles falling from tall buildings. As a result
f this, there is an urgent need for an effective and efficient NDT&E
ethod for inspecting external tile–walls of high-rise buildings.

n view of such a demand, an impact acoustic method has been
eveloped. The proposed method can easily be integrated with a
limbing service robot [1,2] to automate the inspection process,

hich does not only improve the efficient of building inspection but

lso reduce the need for human workers to work at life threatening
eight. The automated detector, which conducts defect detection
y impact sounds, is carried by a climbing service robot to move
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from one location to another until the entire building area of con-
cern is covered.

As an established technique for inspection, impact sounds gen-
erated by tap test have been widely used for integrity assessment
[3,4]. The principle of method is based on the fact that if two mate-
rials which are bonded together are impacted with a small hard
object, the relative intensity and fundamental frequency of flexu-
ral vibration in the induced sounds will vary depending on the bond
quality. The manual version of this method is simple and cheap, but
is subjective and operator-dependent.

To remove the dependence on the human ear and subjec-
tive judgment, many efforts have been paid to automate the
impact testing operation to develop a quantitative and low-cost
nondestructive testing method for bonding defects identification.
From the frequency distribution impact acoustics parameters,
Asano et al. [5] derived a spectral feature based defects detec-
tion system. A similar investigation reported by Liu et al. [6]
proposed to use the sound intensity ratio, which was calculated

by the area of different bands in the power spectrum density
(PSD) of the impact acoustic signals, to quantitatively identify
the bonding defects of the tile–wall. Based on the theoreti-
cal analysis of the impact dynamics, Tong et al. [7,8] proposed
tile–wall bonding state monitoring methods which employed the
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rtificial neural network (ANN) classifier with features extracted
rom the PSD or time domain pattern of the impact acoustic sig-
als. To alleviate the dependence on training samples, Tong et
l. [9] reported a support vector machine (SVM) based tile–wall
onding state classifier, which also used the features extracted
rom the power spectrum density (PSD) as input. In another
ttempt to suppress the effects of noise, Luk et al. [10] developed
n impact acoustic inspection method that utilized the wavelet
omain features with hidden Markov modeling to achieve high
erformance in practical implementation under noisy environ-
ent.
Besides the bonding quality of the localized position associated

ith each impact, the overall size of the bonding defect is also
n important criterion for practical result evaluation because only
he bonding defects with a size bigger than 200 mm × 200 mm are
onsidered to be dangerous, and are required immediate repair.
owever, while the problem of bonding defect identification has
rawn a lot of attention, few works have been performed to uti-

ize impact acoustic sounds to estimate the approximate size of the
onding defect. According to sound and vibration theory [11], for
ounds emitted from debonded structures, it can be theoretically
oncluded that the corresponding fundamental flexural frequency
will be inversely proportional to the size of bonding defect.

ccording to this principle, an experienced operator can estimate
he approximate size of void by listening to the impact sounds.
hus F can be automatically extracted to evaluate the approxi-
ate size of the defect, which is an important parameter for the
DT&E result assessment and maintenance planning. Relying on

he combined information of F and quantitative bonding quality
ndicator such as R [6], it is possible to detect and evaluate the
egree of debonding and the size of the defect quantitatively by
nly a single impact. Nonetheless, factors such as the shape of void,
elative impact position, the multiple mode resonance frequen-
ies as well as the background noise make it difficult to extract
utomatically the fundamental frequency F by classical threshold
ethods.
The classic threshold based clustering methods generates hard

artitions, and in a partition, each pattern belongs to one and
nly one cluster. In reality, there is very often no sharp bound-
ry between clusters. So, the fuzzy clustering method is often
ore suitable for practical applications. Membership degrees

etween zero and one are used in fuzzy pattern recognition
nstead of crisp assignments of the data to clusters [12]. This
s the reason why experienced operators can often outper-
orm traditional automatic algorithms in signal explanation and
nderstanding. Therefore, imitating human reasoning processes
an potentially improve the pattern recognition performance.
n [12], Liu et al. applied fuzzy pattern recognition on grind-
ng burn damage monitoring based on acoustic emission (AE)
eatures to improve accuracy. Wu et al. [13] proposed a fuzzy
ogic expert system for AE fault diagnosis of scooter platform.
n this study, the application of fuzzy theory for defect assess-

ent of tile–walls is presented. The objective of the proposed
ethod is to mimic human expert with a fuzzy system in order

o automate the fundamental-frequency extraction for void size
stimation. In order to realize this task, impact sound signals
eceived by a microphone are used for the determination of bond-
ng quality and also for the size assessment whenever a void is
etected.

The paper is organized as follows. First, the theoretical basis of
uzzy analysis and size estimation is introduced. Next, the fuzzy-

nalysis-based feature extraction processing method including
he design of membership functions and approximate-reasoning
ules is outlined. Finally, experimental results of on-site tests
nd some discussions are presented to verify the proposed
ethod.
ors A 167 (2011) 588–593 589

2. Basis of fuzzy system [14,15]

In view of its ability to overcome the limitations of binary logic,
the theory of fuzzy logic has drawn more and more attention in
many fields such as control, automation and pattern recognition.
Fuzzy logic is a useful approach to simplify a complex system in
engineering application. Besides, fuzzy analysis can be applied to
describe and process inexact and incomplete data, which is often
encountered in real situations involved human behaviour. Hence, it
is possible to apply fuzzy logic to represent the human knowledge
and experience in the form of rule-based logic so that the decision
output can be obtained. So the performance of this fuzzy analysis
system will be superior to that of a simple classical 0–1 binary logic
system.

The implementation of fuzzy analysis can be divided into 3 key
stages: fuzzification of the input values, rule-based fuzzy reasoning
and defuzzification for the system output.

The input variable is first converted into its fuzzy set domain,
e.g., “very high”, “high”, “medium”, “low” and “very low”, each set
with a defined “membership function”. In contrast to the classical
logic, which has only two crisp values expressed in the forms of “yes
or no”, “true or false” or “0 or 1”, the concept of fuzzy logic is based
on membership functions, which can take on arbitrary values from
the interval [0,1]. The membership function describes the degree
to which an object belongs to a certain set.

Fuzzy inference is the decision making process and the most
important operation in fuzzy expert systems and fuzzy controllers.
However, in a lot of engineering systems, data such as sensory read-
ings are often in the form of crisp values. In order to allow the crisp
values to be processed by the fuzzy inference engine, a fuzzifica-
tion step is needed to convert crisp values into appreciate fuzzy
sets. Similarly, as most of engineering systems cannot handle the
fuzzy results produced by the fuzzy inference engine directly, a
defuzzification step is needed to convert the fuzzy sets into crisp
values which can be recognized and processed by the engineering
systems. The knowledge and experience of the human expert are
represented with rules such as:Rule 1: If X1 = A11 . . . and Xi = A1i . . .
and Xn = A1n,then Y = B1where Xi and Y are input and output of the
system, A1i is the fuzzy set which is mapped from the original input
variable. B1 is the fuzzy set in the output domain.

Finally, the defuzzification stage performs the conversion of a
fuzzy set formed by approximate reasoning into a crisp value to
produce the output. The latter is often defined as the abscissa of
the center of gravity of the area under the membership function of
the output fuzzy set.

3. Size assessment of defect

3.1. Theoretical basis

For the sake of convenience, a void-filled tile–wall is modeled
as a thin rectangular plate with simply supported edges. Accord to
vibration principles, the flexural vibration frequency of different
modes can be written as [11]

fmn = 0.453cLh

[(
m + 1

Lx

)2
+

(
n + 1

Ly

)2
]

(1)
where cL is the velocity of longitudinal waves in an infinite plate,
h is the thickness of plate, Lx and Ly are dimensions of rectangular
plate, and m and n are integers (beginning with zero). From Eq. (1),
the analytical expression for the fundamental frequency of flexural
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Fig. 1. Analysis and experimental result o

ibration of a thin plate is

= f0,0 = 0.453cLh

[(
1
Lx

)2
+

(
1
Ly

)2
]

(2)

It can be seen that the fundamental frequency of flexural reso-
ance F will increase with diminishing void size. Hence, F offers a
ossible indicator for the size assessment of tile–wall debonds.

Of course, because of the physically inhomogeneous material
nd complexity of the vibration process, the accuracy of size assess-
ent based on F is relatively low. However, considering that the

im of void-size evaluation is just to provide an approximate ref-
rence for the maintenance planner and operator, the less accurate
valuation is already good enough in practical applications.

.2. Difficulties in extraction of fundamental frequency

In practical extraction of F, for approximately the same size, the
elative amplitude of fundamental-frequency peak will be affected
y the shape of void and relative location of impact over the void.
s a result, automatic determination of fundamental frequency will
e difficult with traditional threshold operation.

Due to the difficulties in theoretical analysis of the relationship
etween sound radiation and impact position of void, finite ele-
ent (FE) analyses (see Fig. 1(a)) are performed to investigate the

ffect of impact position on resulting sounds [7]. With the com-
ercial package ANSYS 56, a harmonic analysis of a thin circular

late (with a diameter of 160 mm, thickness of 7 mm) impacted at
ifferent positions over a circular void is conducted. The assumed
arameters of concrete are input in the FE model in order to sim-
late the tile–wall material. Results from FE numerical studies are
resented as Fig. 1(a) in terms of the normalized spectra for 9 dif-
erent impacts at points along a plate diameter. It is shown that the
elative intensity of the fundamental component becomes stronger
ith the impact location getting nearer to the center of the void.

Correspondingly, the variation of different high-order compo-
ents in impact sounds is investigated experimentally on a concrete
pecimen, which has an approximate-circle void with a diameter of
bout 200 mm. Experimental results are shown in Fig. 1(b), reveal-
ng that the fundamental flexural vibration component becomes
pparently stronger when the impacting position moves closer to
he center of the void. Impacts near the edge of the void create

ounds with weak fundamental frequency. This agrees well with
he trend obtained by FE analysis in Fig. 1(a).

In conclusion, it is observed that impact near the center of the
oid leads to a strong fundamental-frequency peak that is easy to
e extracted. On the other hand, a weak fundamental-frequency
amental frequency and impact position.

peak with strong multiple mode frequency peak caused by impact
near the edge of void will make the automatic extraction diffi-
cult. Thus the performance of size assessment will be seriously
affected.

In this paper, guided by the superior evaluation ability of the
experienced human operator, fuzzy technique is adopted to deal
with difficulties in defect assessment.

4. Generation of fuzzy logic model

4.1. Basis for fuzzy assessment

Relying simply on threshold detection, the reliability and pre-
cision of fundamental-frequency extraction will deteriorate when
the amplitude of the F peak is weaker than fake peaks caused by
noise or multiple-mode resonance. Due to the imprecise charac-
teristics of the problem, it is difficult to find binary-logic judgment
rules to identify the F peak out of the many peaks existed in
the sound signals. With fuzzy analysis, human understanding
of the fundamental frequency and interference effects based on
parameters such as the amplitude and width of peak, the shape
characteristics of spectrum and the information from neighbor-
ing impact can be jointly used to obtain the results of improved
precision.

Before the corresponding fuzzy algorithm is developed, we shall
examine the features of the impact sound which enable the F
extraction task to be accomplished by the experienced operator:

Firstly, as mentioned before, a high relative amplitude of any
frequency peak implies the high possibility of the presence of F.
This peak value is defined as X1.

The relative strength of the band lower than the assumed fun-
damental frequency can also offer an indicator for detection; this
indicator is defined as X2. Generally, X2 should be a low value.

In addition, impact sounds for neighboring points scanned on
the wall can also provide reference information for judging whether
there is a big void. The cross-correlation coefficient of correspond-
ing parts of the power spectral density (PSD) of two consecutive
impact sounds is defined as X3.

To enhance the performance of fuzzy inference engine, one more
indicator is introduced. The original PSD is first filtered by a 4th-
order filter. From the intersection between the original and filtered

PSD, cross-points are obtained (see Fig. 2 where many peaks are
observed). Both the amplitude and the width of each peak are
measured. The width is defined using the cross-points. The ratio
of width to amplitude of each frequency peak, defined as X4, can be
used as one of the indictors for judgment. A peak with extremely
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ig. 2. Waveform and corresponding original and smoothed PSD of impact sound.

ide or narrow width is less likely to be judged as the F peak
orresponding to the fundamental frequency.

The above four indicators derived from the impact sound will
ct as inputs to the fuzzy logic model. To avoid the adverse influ-
nce caused by abnormal impacts, the quality factor of the received
ignal is obtained first by estimating the signal/noise ratio (SNR) to
uarantee the effectiveness of algorithm.

.2. Fuzzification process for model inputs

In the fuzzification stage, the inputs X1, X2, X3 and X4 of impact
ounds will be extracted and converted to the appropriate fuzzy
ets. The design of the membership function for each fuzzy set
lays a crucial role in influencing the performance of the fuzzy
ystem. In the present exercise, the definitions of membership func-
ions are designed based on extensive experimental analyses of the
elationship between the inputs and the corresponding defect case.

To get the inputs for the analysis, the PSD of impact sounds
s subtracted by its smoothed counterpart to obtain the original

ine spectrum (see Fig. 2 for the details). Then the line spectral
omponents including the fake ones and the one associated to the
undamental frequency are obtained by a direct threshold detec-
ion method. According to the characteristics of impact sounds and
uman experience, the membership functions for these inputs are

Fig. 3. Membership function
Fig. 4. Membership function of system output.

defined as shown in Fig. 3, which are used to convert each crisp
input into appropriate fuzzy sets. Curves in Fig. 3(a)–(d) repre-
sent the process for calculating the degree of confidence for X1, X2,
X3 and X4 respectively. The membership functions in Fig. 3(a)–(c)
exhibit similar pattern, with the small value of input indicating
low possibility of fundamental frequency and large value of input
corresponding to high possibility. In Fig. 4(d), as both inputs, with
extremely large or small value, are less likely to be judged as funda-
mental spectral peak. The ‘Medium’ case, on the other hand, implies
a high possibility of the presence of F.

4.3. Fuzzy reasoning

Based on the experience and knowledge about the relationship
between the inputs and the characteristics of defects mentioned in
Section 4.1, the underlying knowledge rules and associated descrip-
tions are presented as:

Rule 1: If X1 = High and X2 = Low and X3 = High and X4 = Medium,
then Y = More possible
Rule 2: If X1 = Low and X2 = High and X3 = Low and X4 = High, then
Y = Less possible
Rule 3: If X1 = Low and X2 = High and X3 = Low and X4 = Low, then
Y = Less possible
Rule 4: If X1 = Low and X2 = Low and X3 = High and X4 = Low, then
Y = Medium possible
Rule 5: If X1 = Low and X2 = Low and X3 = High and X4 = High, then
Y = Medium possible
Rule 6: If X1 = Low and X2 = High and X3 = High and X4 = High, then
Y = Less possible

Rule 7: If X1 = Low and X2 = High and X3 = High and X4 = Low, then
Y = Less possible
Rule 8: If X1 = High and X2 = Low and X3 = High and X4 = Low, then
Y = Medium possible

s of 4 selected inputs.
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Rule 9: If X1 = High and X2 = Low and X3 = High and X4 = High, then
Y = Medium possible
Rule 10: If X1 = High and X2 = High and X3 = High and X4 = Medium,
then Y = Medium possible
Rule 11: If X1 = High and X2 = Low and X3 = Low and X4 = Medium,
then Y = Medium possible
Rule 12: If X1 = High and X2 = High and X3 = Low, then Y = Less pos-
sible

These fuzzy rules are designed based on typical patterns of fun-
amental spectral peaks, as well as typical interferences leading to
isdetection or failure in detecting fundamental spectral peaks. To

e specific, Rule 1 corresponds to the spectral peak with distinct
eatures of fundamental frequency in all four inputs. Thus the pres-
nce of ‘High’ X1, ‘Low’ X2, ‘High’ X3 and ‘Medium’ X4 indicates a
igh likelihood of being F. On the other hand, Rules 2, 3, 6, 7 and
2 are presented to define the cases with pretty low possibility of
eing fundamental spectral peaks. For example, Rules 2 and 3 rep-
esent typical features of non-fundamental frequency in all four
nputs. Rules 6, 7 and 12 are proposed to eliminate misdetection of
caused by certain interferences which leading to one F type fea-

ure in four inputs. Meanwhile, for cases with two or three inputs
xhibiting fundamental spectral peak pattern, medium likelihood
f being F is assigned, as indicated in Rules 4, 5, 8, 9, 10 and 11. The
utput membership functions are shown in Fig. 4.

.4. Defuzzification

In the defuzzification stage, the output fuzzy set is obtained by
ule-based reasoning and mapped to an output membership func-
ion against Y (which is not plotted in Fig. 4 as this depends on the
ombined inputs in each case).

After defuzzification, the particular frequency is recognized as a
undamental frequency F with a confidence degree obtained (indi-
ated in Fig. 6 by a circle). A final threshold will be set to determine
hether this output confirms the acceptance of the frequency
nder test as F or not.

. Experimental study
.1. Set-up for NDT experiments

The proposed NDT&E experimental system is illustrated in
ig. 5. The apparatus adopted includes: a steel sphere of diam-
ter 23 mm driven by a linear solenoid actuator; a pre-amplifier

Fig. 6. Frequency extracted and correspo
Fig. 5. Schematic of NDT experiment set-up.

module; an A/D converter card with 40 kHz sampling rate; a highly
directional microphone. Such an impacting system provides a sim-
ple mechanism to produce tapping actions for generating impact
sounds for defect detection. An NDT&E module developed from
this experimental system is installed on an automated scanning
device, which is incorporated into a climbing robot [1,2], to per-
form health monitoring of the tiles on the building; the NDT&E
module, the automated scanning device and the climbing robot are
integrated together to form an automated solution with high safety
for tile–wall inspection.

The main advantage of this impact inspection method is that the
impacting device and microphone need not be coupled through the
surface of the wall. This is of great convenience for the robot system
working at heights. Moreover, it will take less time and effort to
perform inspection on large area of tile–walls.

5.2. Experimental results

Experiments on a tile–wall in the campus of City University of
Hong Kong are carried out to demonstrate the effectiveness of the
present method. For easier reference, the fundamental frequencies
extracted by the method are marked by circles on vertical poles
in Fig. 6 with their pole heights reflecting the output confidence
degree. As seen from Fig. 6(a), (c) and (d), fundamental frequencies
even with relatively weak amplitudes can be correctly obtained by
overcoming the influence of the relatively strong multiple-mode

frequency peaks. In Fig. 6(b), a peak picked out from the multiple-
mode frequency peaks is not regarded as F because of the low
confidence degree obtained after going through the fuzzy reasoning
process (0.48).

nding confidence degree obtained.
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Fig. 7. Experimental results of fuzzy based defect assessment.

In Fig. 7, the results of fundamental-frequency extraction are
ummarized with the corresponding estimated size of the void.
t the same time, the actual physical sizes of debonding are plot-

ed to verify the relative effectiveness of the proposed method. As
hown in Fig. 7, the basic agreement of the fundamental frequency
obtained from fuzzy assessment and theoretical calculation indi-
ated that the fuzzy-system-based method introduced in this paper
erforms well for practical implementation.

. Conclusion

To improve the efficiency and performance of the robotic wall-
nspection system, a fuzzy-logic-based fundamental-frequency
xtraction algorithm has been developed to overcome the diffi-
ulties in void-size estimation based on impact sounds. With the
mployment of human knowledge, multiple features of impact
ound are used as the inputs for a rule-based fuzzy-logic model
ystem for obtaining the fundamental frequency F for automatic
DT&E use. Site experimental results obtained in university-
ampus have been reported and have demonstrated the relative
ffectiveness of the described method.
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