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ABSTRACT 

 

Currently, the state-of-the-art speaker verification system is 

based on i-vector and PLDA. However, PLDA requires tens 

of thousands of development data from many speakers. This 

makes it difficult to learn the PLDA parameters for a 

domain with scarce data. In this paper, we propose an 

effective transfer learning method based on Bayesian joint 

probability in which Kullback-Leibler (KL) divergence 

between the source domain and the target domain is added 

as a regularization factor. This hypothesis could utilize the 

development data of source domain to help find a better 

optimal solution of PLDA parameters for the target domain. 

Experimental results based on the NIST SRE and 

Switchboard corpus demonstrate that our proposed method 

could produce the largest gain of performance compared 

with the traditional PLDA and the other adaptation approach. 

 

Index Terms— Speaker Verification, PLDA, Transfer 

Learning, Domain Adaptation 

 

1. INTRODUCTION 

 

The task of speaker verification is to verify the identity of 

speaker given a speech utterance. Its robustness is affected 

by many factors (channel, noise, language, duration, etc.), of 

which the most important one is channel variation. In the 

past ten years, text-independent speaker verification [1] has 

achieved great progress to solve the channel problem. Many 

machine learning approaches, including support vector 

machine (SVM) [2,3], joint factor analysis (JFA) [4,5], i-

vector [6], have been proposed. Currently, the state-of-the-

art speaker verification system is based on i-vector and 

probability linear discriminant analysis (PLDA) [7,8,9]. 

With the posterior estimation of the hidden variables on the 

Baum-Welch statistics from the Gaussian components of a 

universal background model (UBM) [1], each speech 

utterance can be represented as a low-dimension vector, i.e. 

i-vector. Length normalization, including centering and 

whitening, is subsequently conducted to the extracted i-

vectors [8]. Furthermore, PLDA is generally adopted to 

compensate the channel difference in i-vectors.  

However, PLDA requires tens of thousands of labeled 

development data from many speakers. For the NIST 

evaluation, this is not a problem since there are sufficient 

data provided. But it will be very difficult for practical 

applications. Even if we have sufficient development data to 

get a well-optimized PLDA for a source domain, it is not 

suitable to use it directly for a new target domain with 

different channels. Several studies have shown that when the 

development data and evaluation data are from different 

domains, the performance of speaker verification will 

significantly deteriorate due to domain mismatch [10-15]. 

To minimize the performance gap between different 

domains, J. Villalba and E. Lleida applied the variational 

Bayes for two-covariance model [10]. D. Garcia-Romero et 

al. proposed several adaptation approaches with similar 

performances, of which PLDA interpolation approach did 

not require keeping the i-vectors of source domain to retrain 

the PLDA [11,12]. A. Kanagasundaram et al. proposed an 

unsupervised inter-dataset variability approach to 

compensate the mismatch but only linear discriminant 

analysis (LDA) projection was applied prior to the PLDA 

modeling [15]. 

     Motivated by the study of face verification [16], we 

propose in this paper an effective transfer learning method 

from the source domain to the target domain. Transfer 

learning has been successfully applied in many fields 

[17,18]. But to the best of our knowledge, there is still not a 

transfer learning schedule for PLDA-based speaker 

verification. Based on a Kullback-Leibler (KL) divergence 

between the distributions of source domain and target 

domain, we define a new optimization function to maximize 

the shared information of two domains. After updating steps 

of transfer learning based on expectation-maximization (EM) 

algorithm, we get the new transfer learning schedule of 

PLDA model based on the same target domain data. 

Experimental results based on the NIST SRE and 

Switchboard corpus show that our method could improve 

the verification performance greatly compared with the 

traditional PLDA, and is more effective at reducing the 

performance gap than PLDA interpolation approach.  

     This paper is organized as follows. Firstly, the general 

theory of standard Gaussian PLDA is briefly introduced in 

which the re-estimation and scoring formulas of PLDA are 
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given. After that, we describe in detail the proposed transfer 

learning method of PLDA, including the objective function 

and re-estimation formulas. Experiments based on the NIST 

SRE and Switchboard corpus are then conducted to verify 

the effectiveness of this proposed method. 

 

2. STANDARD GAUSSIAN PLDA 

 

PLDA has gained popularity as an elegant classification tool 

to find target classes in recent NIST challenges. In this paper, 

we use the Gaussian PLDA (G-PLDA) after i-vector length 

normalization. In Gaussian PLDA, the i-vector ijx  for the 

jth utterance of speaker i is decomposed as follows. 

ijiijx                             (1) 

where μ represents the mean of development data, i is an 

identity variable of speaker i having a standard normal prior 

N(0,I), matrix   constrains the dimension of the speaker 

subspace, and the residual ij contains the session factors 

following a normal distribution with mean 0 and covariance 

matrix  .  

      For iMjNi ,...,1,,...,1  , let ij  denotes the first 

order statistic ）（ -ijx . Then the mean value of the first 

order statistic of speaker i is defined as iF , 
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where iM  is the number of utterances which belong to 

speaker i. And the posterior distribution of iF  based on the 

hidden variable i  is  
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In the E-step, we can calculate the expectation of 

)|( ii FP   based on Bayes’ theorem. 

In the M-step, the following log-likelihood function will 

be maximized. 
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     Finally, the re-estimation formulas of PLDA parameters 

），（   are derived as follows. 
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For the scoring of PLDA, supposed two i-vector modx  

and tstx  for the model and the test utterance respectively, 

the likelihood ratio between the “same-speaker” hypothesis 

sH  and “different-speaker” hypothesis dH  is calculated as 

follows [19,20]: 
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3. TRANSFER LEARNING 

 

Due to the problem of scarce data, the PLDA that is directly 

optimized on the limited development data of target domain 

may lead to an over-fitting solution. In view of the 

distribution similarity between data in the source domain 

and the target domain, we can utilize the information of the 

source domain to help find a better optimal solution that 

adequately reflects both domains and generalizes to the 

target domain [16]. In this paper, we propose a novel 

transfer learning method, in which KL regularization factor 

is added into the objective function of PLDA. 

Based on the definition of KL divergence and formula 

(3), we can derive the representation of KL divergence 

between the source domain PLDA and the target domain 

PLDA as follows.  
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where sF  is the mean value of the first order statistic of i-

vectors in the source domain, tF  is the mean value of the 

first order statistic of i-vectors in the target domain. 

）（ ss ,  are the PLDA parameters of the source domain, 

and ）（ tt ,  are the PLDA parameters of the target domain. 

k is the dimension of sF  and tF . Additionally, operator tr  

is to get the trace of matrix st 1
. 
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3.1. Objective Function 

 

Given the PLDA parameters ）（ ss ,  of the source domain 

and the limited development data of the target domain, our 

objective is to learn the suitable PLDA parameters  

）（ tt ,  for the target domain. The new optimization 

objective of transfer learning is defined as follows. 
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where   is an adjusting weight. In this objective function, 

the first part is the same as the optimization objective of 

standard PLDA, and the second part is KL divergence which 

can be calculated as formula (8). When 0 , this 

objective function will regress to the original PLDA. With 

the value of   increasing, the optimization process will 

gradually lead to the distribution of the source domain. 

 

3.2. Re-estimation Formula 

       

In formula (9), by setting the derivative of objective 

function towards t  to be zero, we have 
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The maximum likelihood estimation for t  is obtained 

through 
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   And then, 
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 Finally, we get the re-estimation formula of t  and t  as 

follows. 
')1(  ww st                               (14) 

www st  ')1(                 (15) 

where )1/(  w . 
'  and 

'  will be updated in each 

step based on formula (5) and (6).   is a new factor, which 

can be calculated as follows. 

    







 




N

i
i

N

i

M

j

T
s

T

iit
T
s

T

iis

M

EE
i

1

1 1



       (16) 

      It can be seen that the new learned PLDA parameters 

）（ tt ,  are the linear fusion of source domain parameters 

and target domain parameters, where the fusion coefficient 

is represented by w. This is different with PLDA 

interpolation [11] in that the proposed re-estimation will be 

conducted in each EM step. After the transfer learning, the 

scoring of PLDA is also based on formula (7), which is the 

same as the standard Gaussian PLDA. 

 

4. EXPERIMENTS 

 

To evaluate the effective performance of the proposed 

transfer learning method to domain mismatch, experiments 

were conducted based on the NIST SRE and Switchboard 

(SWB) corpus. We extracted 32-dimension MFCC with 

appended delta coefficients from each speech utterance. The 

total variability subspace of dimension 400 was estimated 

by the Baum-Welch statistics. And the PLDA was trained 

with speaker subspace of dimension 120. All the results 

presented in this paper concentrated on female trials only. 

From the SWB corpus, 11,453 utterances from 993 

speakers were picked out to train a UBM containing 1,024 

Gaussians. And we used the same training data to estimate 

matrix T and PLDA parameters. In our experiments of 

domain adaptation, the SWB corpus was used as the data of 

source domain.  

For the performance evaluation, the NIST SRE10 [21] 

telephone data (condition-5) was used as enroll and test sets, 

which includes 355 target and 15,958 non-target trials.  

For each i-vector, the centering process was based on the 

mean of its domain, but the whitening process was based on 

the SWB statistics. Note that this was a key step to produce 

the best results of domain adaptation. If the whitening 

process was based on different statistics, the verification 

performance would deteriorate greatly. The impact of length 

normalization has been also addressed in [12]. In our case, 

the system setup was listed in Table 1. 

 

Table 1 System setup of our experiments 
Domain UBM,T Centering Whitening PLDA 

Source SWB SWB SWB SWB 

Target SWB SRE SWB SRE 

 

     To conduct domain adaptation, we designed four 

experiments based on varying amounts of target domain 

data. From the NIST SRE corpus, we selected 150, 300, 600 

and 1,325 speakers to act as the development data of target 
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domain respectively. Four PLDA of the target domain 

would be learned based on the corresponding dataset 

respectively. And PLDA of the source domain would be 

learned based on the SWB data.  

We compared the performances of transfer learning with 

PLDA of the source domain (Source PLDA), PLDA of the 

target domain (Target PLDA) and PLDA interpolation. For 

PLDA interpolation, the PLDA parameters of source 

domain and the PLDA parameters of target domain were 

fused directly with an interpolation parameter which would 

be adjusted based on the amount of target domain data [12].  

In our experiments, the equal error rate (EER) and the 

2010 minimum decision cost function (minDCF) were 

calculated as evaluation metrics. The EER results of 

performance evaluation of the NIST SRE10 telephone data 

were shown as follows. 

 

 
Figure 1 The EER results of source PLDA, target PLDA, 

PLDA interpolation and transfer learning 

 

With the same test data, Figure 1 illustrates the EER 

results of different methods when 150, 300, 600 and 1,325 

speakers were selected to act as the development data of 

target domain respectively. For the method of Source PLDA, 

EER was fixed with the value of 7.02%, since it didn’t 

utilize the development data of target domain. For the 

method of Target PLDA, with the increasing number of 

speakers, EER was reduced from the value of 8.45% to 

5.92%, 5.04% and 3.66% respectively. When there were 

only 150 speakers in development data, EER of Target 

PLDA was even worse than Source PLDA. However, when 

1,325 speakers were all used, the parameters of Target 

PLDA were optimized well and had quite better 

performance than Source PLDA. This proved the 

importance of development data for the robust optimization 

of PLDA. PLDA interpolation remained, basically, constant 

across the number of speakers and the transfer learning 

results were also constant until a larger number of speakers 

were available.  

For the methods of PLDA interpolation and transfer 

learning, the EER results of 150 speakers were 3.73% and 

3.66% respectively, which reduced the EER greatly by 

55.9% and 56.7% compared with the method of Target 

PLDA. When there were 300 speakers, the EER was 

reduced from 5.91% of Target PLDA to 3.66% of PLDA 

interpolation and 3.64% of transfer learning respectively. 

This showed that both adapted methods were powerful to 

reduce the performance gap.  

For all four experiments, the EER results of transfer 

learning were always the lowest, which demonstrated the 

significant effectiveness of our method. Specifically, the 

EER could be further reduced by transfer learning even 

when all 1,325 speakers were used. This showed that the 

parameters of Target PLDA and PLDA interpolation were 

not full optimized, but the proposed method could utilize the 

development data of source domain more effectively to help 

find a better optimal solution of PLDA parameters for the 

target domain. 

In Table 2, the minDCF results for different number of 

speakers are further compared. In all cases, our proposed 

transfer learning method had the smallest minDCF. 

 

Table 2 minDCF results of source PLDA, target PLDA, 

PLDA interpolation and transfer learning 
Number of Speakers 150 300 600 1325 

Source PLDA 0.0575 0.0575 0.0575 0.0575 

Target PLDA 0.0696 0.0611 0.0499 0.0482 
PLDA interpolation 0.0551 0.0428 0.0482 0.0437 

Transfer Learning 0.0465 0.0403 0.0446 0.0400 

 

5. CONCLUSION 

 

In this paper, we have successfully designed a transfer 

learning method from a source domain with sufficient 

development data to a new target domain. Our proposed 

method is based on KL divergence, which can effectively 

utilize the similar information between the source domain 

and target domain. This could help find a better optimal 

solution that adequately reflects both domains and 

generalizes to the target domain. We have conducted four 

experiments based on varying amounts of target domain 

data based on the NIST SRE and Switchboard corpus. And 

experimental results demonstrated that our proposed method 

could produce the largest gain of performance in EER and 

minDCF, compared with the traditional PLDA and PLDA 

interpolation approach. 
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